

ISMRM 2017 EWSLETTER

NUKEM Isotopes Imaging GmbH

Oxygen-17 ISMRM Abstracts MR-Bibliography about Oxygen-17 Product Brochures

Contact us

www.nukem-isotopes.com

Company information	1
Products and Applications	2
Oxygen-17 in the form of Oxygen gas	2
ISMRM-Abstract (¹⁷ O in the form of gas)	3
Oxygen-17 in the form of glucose	6
ISMRM-Abstract (¹⁷ O in the form of glucose)	7
Oxygen-17 in the form of water1	4
Xenon-129 in the form of gas mixtures2	23
Nitrogen-15 and Oxygen-182	23
Information about our ISMRM booth wall1	6
ISMRM-Abstract (booth wall information)1	6
Oxygen-17 Bibliography1	8
Cooperation partner	24
Polarean Inc2	24
Our ISMRM Rubber Duck Family2	28

Company information

NUKEM Isotopes GmbH based in Alzenau, Germany is a global leader in providing isotopes in the form of ultra-pure substances for industry, agriculture and medical applications. We have been a reliable partner for long term demands of stable isotopes for more than two decades. We maintain our partnership with the major enrichment enterprises in the Peoples Republic of China, the Republic of Georgia and the Russian Federation. With our warehouses at Frankfurt Airport, Hamburg seaport and cooperation partners in USA, we are able to ship our isotopes within 48 hours to our clients worldwide. With our quality management (ISO 9001-2008, NUPIC) as well as third party analysis of our products, we guarantee our customers reliable services and high quality isotopes.

NUKEM Isotopes Imaging GmbH was established in 2015 and is specialized in the supply of stable isotopes, which are used in the field of Magnetic Resonance Imaging (MRI). Currently NUKEM Isotopes Imaging GmbH provides two isotopes, Oxygen-17 and Xenon-129, in different forms and enrichments. For further information, please check the following pages, visit our website (www.nukem-isotopes.com) or contact us directly (ISMRM 2017, booth no.: 222). NUKEM Isotopes Imaging GmbH is ISO 9001-2008 certified and has established long term relationships with medical companies, who are specialized in producing ultra-pure products in compliance with cGMP regulations. This guarantees our customers in the medical fields a high quality and safe product.

Uur Products and Applications

Oxygen-17 in the form of Oxygen gas

NMR technology based on Oxygen-17 uses the magnetic properties of atomic nuclei that occur naturally in the body. Oxygen-17 (¹⁷O) is now being used for diagnostic applications and medical research to create a new generation of NMR Images.

New developments with ¹⁷O enhance the quality of information about living tissue to improve the practice of medicine in the fields of cardiology and neurology among others.

The magnetic property of ¹⁷O makes it to a promising tool for assessing in vivo metabolic tissue information at high fields (\geq 3T).

The latest research results, performed with our 70at% enriched ¹⁷O gas can be found on the following pages (p.3-6).

Enrichment	¹⁷ O > 70at%
Purity	> 99.9%
Volume	5L, 10L and 20L with a CGA 540 valve (left picture). 1L and 2L with a ¼" NPT valve (right picture)
СО	≤ 10 ppm
CO ₂	≤ 100 ppm
H ₂	≤ 50 ppm
N ₂	≤ 500 ppm

Our Oxygen-17 products are manufactured in accordance with cGMP regulations and with the requirements of 21 Code of Federal Regulations: PARTS 210 and 211.

Direct Partial Volume Corrected CMRO₂ Determination: Simulation Assisted Dynamic ¹⁷O-MRI

Sebastian C. Niesporek¹, Reiner Umathum¹, Jonathan M. Lommen¹ and Armin M. Nagel^{1,2}

¹Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany,²Institute of Radiology, University Hospital Erlangen, Erlangen, Germany

PURPOSE The oxygen metabolism (oxidative phosphorylation) in the human brain is an indicator of cell viability. The only stable MR-visible oxygen isotope (¹⁷O, nat. abundance 0.037%) can be utilized in a dynamic inhalation experiment for a localized determination of the cerebral metabolic rate of oxygen consumption (CMRO₂) by quantification of $H_2^{17}O[1]$. A changing CMRO₂-value can for example be seen in tumor cells[2] ('Warburg Effect') or in Alzheimer's disease[3]. Therefore, an accurate and localized CMRO₂-determination is of interest to study the metabolism under various conditions or for treatment evaluation. Quantification accuracy of ¹⁷O-MRI is severely limited by partial volume (PV) effects, that are caused by fast T_2^* -relaxation and low spatial resolution of ((5-10mm)³). Latter is caused by a factor of 10⁶ reduced in-vivo ¹⁷O-signal compared to protons. Therefore, pulse sequences that enable ultra-short echo-times and high SNR-efficiency such as 3D-density-adapted radial (3D-DAPR)[4] or twisted-projection imaging[5] are used. For quantification in nonproton MRI, a partial volume correction (PVC) algorithm[6] was already successfully applied[7,8]. In the presented study a dynamic ¹⁷O-inhalation experiment of a healthy volunteer was conducted. Effects of temporal resolution, a sliding-window-reconstruction (SWR) technique and PVC were evaluated by simulation and findings were applied to experimental data.

METHODS An in-house developed human brain-simulation was modified for simulation of dynamic signal evolution, analogous to an inhalation experiment (Fig.1A). Tissue water-concentration[9] (c_w) was simulated as follows: GM-c_w =80% and CMRO₂=2.0µmol/g*min; WM-c_w=69% and CMRO₂=0.7µmol/g*min and CSF-c_w =100% (no metabolism). Dynamic ¹⁷O-data was reconstructed with variable temporal resolution Δt (Δt =0:30min-2:00min) and PVC was applied to every data-set for quantification of H₂¹⁷O. Three compartments (CSF, grey (GM) and white matter (WM)) were considered and T2*-decay[10] was incorporated into simulation and correction. A three-phase metabolic model[1] was fitted to corrected data to obtain CMRO₂-values in considered brain compartments.

For the in-vivo experiment a MR-compatible breathing-system, administering a variable ¹⁷Obolus in a closed circuit (Fig.1A), was used. Imaging was conducted with a custom-built ¹⁷O/¹H-head-coil on a 7T MR-system[11]. ¹⁷O-data was acquired with a 3D-DAPR-sequence using a Golden-Angle (GA) projection acquisition-scheme[12] allowing variable Δt with a nominal spatial resolution of (7.5mm)³ (Fig.1B). During the three-phase-experiment (T_{Acq}=40:00min), 4.0±0.1L of 70%-enriched ¹⁷O-gas[13] was inhaled by a male volunteer (age 65): baseline-phase (10:00min, room-air), ¹⁷O-inhalation phase (11:30min), decay phase (17:30min, room-air). Additional data for B1-correction[14] and anatomical ¹H-data were acquired as registration- and segmentation-basis. Post-processing of measured datasets was conducted analogous to simulations.

RESULTS Quantification results were verified with the simulation's ground-truth (GT): PVcorrected data, with and without simulated noise showed deviation of c_W of 1-8% for GM and 0-5% for WM. In contrast, 25-32% for GM and 11-16% for WM was observed for noncorrected data, respectively. PV-bias was also seen for pre-PVC CMRO₂-values determined before PVC. The PVC showed improvement with minor influence on chosen Δt (Tab.1/Fig.2) for GM and WM.

Obtained c_W -values for PV-corrected experimental data in the baseline-phase was within $\pm 5\%$ of expected value for all considered compartments. The enrichment-factor α of administered ¹⁷O-gas in the breathing-system was estimated to $49\pm3\%$ and determined CMRO₂ values were: CMRO₂=2.07\pm0.15\mu mol/g*min (GM) and

CMRO₂=0.65±0.03 μ mol/g*min (WM) (Tab.2/Fig.3). A SWR where consecutive reconstruction timeframes were shifted backward by $\Delta t/2$ was also applied and evaluated in simulations and also adopted to in-vivo data (Tab.1B/Tab.2), showing no change in obtained CMRO₂.

Discussion Utilization of the brain-simulation allowed direct verification of dynamic ¹⁷O-data analysis in a realistic setting: strong PV-influence was seen for $H_2^{17}O$ -concentration and CMRO₂-values (19-55%) which led to over- and underestimation of the metabolic rate. The applied PVC is able to correct close to the GT by decreasing the PV-bias on CMRO₂-values (max. deviation 8.5%). The GA-acquisition allowed evaluation of a variable Δt and the SWR: CMRO₂-values showed negligible influence on chosen Δt and SWR, whereas application of a SWR reduced fitting errors. Inaccuracies in quantification and fitting uncertainty are mainly influenced by decreasing SNR with lower Δt .

The in-vivo data exhibited similar behavior for varying Δt and SWR. WM CMRO₂-values (lowest expected PV-bias) are in good agreement with other studies[1,7,15,16] (Tab.2) whereas GM CMRO₂-values show more variation: Studies without PVC state an up to 30% lower GM-CMRO2-value. However, in-vivo GM- and WM baseline-c_W is still underestimated by 4-6%, most likely due to not fully corrected transverse relaxation which can also slightly influence determined CMRO₂-values.

CONCLUSION The presented simulation-assisted dynamic ¹⁷O-MRI experiment verifies the applied PVC-algorithm, improves CMRO₂-determination and optimizes post-processing. The ability to investigate Δt and applied SWR helps to save expensive ¹⁷O-gas. This approach will be pursued in further inhalation measurements aiming to show reproducibility in volunteer studies. Furthermore, our breathing system has a low breathing resistance allowing patient measurements.

REFERENCES

[1] Atkinson et al., Neuroimage 2010 (51): 723–733, [2] Miles KA, Williams RE., Cancer Imaging 2008 (8):81-86, [3] Beal MF., Ann Neurol; 1992 (2):119-130, [4] Nagel et al., Magn Reson Med 2009 (62):1565-73, [5] Boada et al., Magn Reson Med (1997); 37: p. 706-715, [6] Rousset et al., J Nucl Med 1998(5):904-911, 1998, [7] Hoffmann et al., MAGMA 2014(27):579-87, [8] Niesporek et al., NeuroImage, 2015(112): 353–363,[9] Neeb et al., NeuroImage, 2006 (31): 1156–1168, [10] Niesporek et al., Proc. ISMRM 24 (2016, #3964), [11] Magnetom 7T, Siemens AG, Erlangen, Germany, [12] Chan, R.W. et al., Magn Reson Med 2009(61): p. 354–363, [13] NUKEM Isotopes Imaging GmbH, Alzenau, Germany, [14] Morell, Magn Reson Med 2008 (60):889-94, [15] Hoffmann et al., Magn Reson Med; 66:1109-15 (2011), [16] Borowiak et al., Proc. ISMRM 23 (2015, #4633)

Review category (proposal):

603 MRS: Non-proton MRS and MRI (all nuclei) - Methods & Applications 705 Molecular Imaging: Other (Original Research, Not Education)

SYNOPSIS A dynamic ¹⁷O-MRI inhalation experiment enables localized mapping of the cerebral metabolic rate of oxygen consumption (CMRO₂) in the human brain via H₂¹⁷O quantification. These functional information are tissue viability parameters and can help studying the brain metabolism. In ¹⁷O-MRI accurate quantification and CMRO₂-determination is severely biased by partial volume effects caused by low spatial resolution and fast transverse relaxation. A human brain-simulation providing realistic dynamic ¹⁷O-data was used to evaluate the performance of a partial volume correction algorithm at different temporal resolution. Findings were then adapted to an in-vivo ¹⁷O-MRI inhalation experiment which was conducted in a healthy volunteer.

Fig. 1 Simulated ¹⁷O-baseline image **(A)** and measured ¹⁷O-baseline image (no B1-correction) **(B)** acquired with a 3D-DARP-sequence (TR/TE=20/0.56ms, Θ =60°, Golden-Angle acquisition, Δ t=2min). Sketch showing the utilized breathing-system **(C)** consisting of a ¹⁷O-reservoir (1), CO₂-absorber (2), remote controllable pneumatic valve (3) switching between room air and closed ¹⁷O-breathing circuit and non-vented breathing mask (4).

Fig. 2 Representative fits of the evolution of tissue H_2^{17} O concentration during a simulated inhalation experiment with $\Delta t=1$ min without (A,B) and with considered noise (C,D) for grey matter (A,C) and white matter (B,D). Start and stop of simulated ¹⁷O-inhalation is indicated by dashed lines. A maximal signal increase of ~40% is seen. The data is normalized to the baseline-concentration to enable better visualization of the PV-bias. Quantification was determined with (black circles) and without (red crosses) PVC and compared to the simulated ground truth (solid line). PV-bias is leading to an underestimation of CMRO₂-values of up to 55%.

Fig. 3 Representative fits of the evolution of tissue H_2^{17} O-concentration during an in-vivo inhalation experiment of male volunteer (age 65) with Δt =1min for grey matter (A), white matter (B) and map of relative ¹⁷O-signal increase with anatomical overlay (C). Start and stop of ¹⁷O-inhalation (duration 11:30min, 4.0 ±0.1L of ¹⁷O-gas) are indicated by dashed lines and a maximal signal increase of ~35% is seen. The data was normalized to the baseline-concentration for better visualization of PV-bias. Quantification was determined with (red circles) and without (black crosses) PVC and a 3-phase metabolic model were fitted to data with PVC (solid line).

Oxygen-17 in the form of glucose

As the first company in the world, we synthesised substantial amounts of single and double labelled O-17 D-Glucose and in cooperation with different research institutes, we performed the first in vivo tests with Oxygen-17 labeled Glucose.

The latest research results about the application of O-17 enriched D-Glucose can be found on the following pages (p.7-14).

If you are interested in other enrichments (also labelled at other positions of the glucose) or in other molecules, labelled with Oxygen-17, please do not hesitate to contact us.

ISMRM-Abstract (¹⁷O in the form of glucose)

Quantification of Cerebral Metabolic Rates of ¹⁷O-Labeled Glucose in Mouse Brain with Dynamic ¹⁷O-MRS

Robert Borowiak^{1,2,3,4}, Wilfried Reichardt^{1,2,3,4}, Dmitry Kurzhunov^{1,2}, Christian Schuch⁵, Dieter Leibfritz⁶, Benjamin Görling⁷, Jochen Leupold^{1,2}, Thomas Lange^{1,2}, Michael Bock^{1,2}

¹Medical Physics, Department of Radiology, Medical Center – University of Freiburg, Germany,²Faculty of Medicine, University of Freiburg, Germany, ³German Cancer Consortium (DKTK), Heidelberg, Germany, ⁴German Cancer Research Center (DKFZ), Heidelberg, Germany, ⁵NUKEM Isotopes Imaging GmbH, Alzenau, Germany, ⁶Faculty of Medicine, University of Tübingen, Germany, 7Bruker Biospin, Rheinstetten, Germany

SYNOPSIS We studied the chemical exchange kinetics of ¹⁷O-labeled glucose at the C1 and the C6 position with dynamic ¹⁷O-MRS. A profile likelihood analysis is performed to determine identifiability and confidence intervals of the metabolic rate CMR_{Glc} . The exchange experiments confirm that the C6-¹⁷OH label is transferred via glycolysis exclusively by the enzyme enolase into the metabolic end product H₂¹⁷O, while C1-¹⁷OH ends up in water via direct hydrolysis as well as via glycolysis. From H₂¹⁷O-concentration time-courses cerebral metabolic rates of $CMR_{Glc} = 0.05-0.08 \ \mu mol/g/min$ are obtained which are in of the same order of magnitude as ¹⁸F-FDG PET.

INTRODUCTION Malignant tumors predominately gain energy by anaerobic glycolysis [1]. Currently, the clinical gold standard to assess glucose metabolism is positron emission tomography (PET) which uses the radioactively labeled [¹⁸F]-fluordeoxyglucose (FDG). Recently, we have performed dynamic ¹⁷O-MRS of ¹⁷O-labeled glucose for the first time to follow up glycolysis in mouse brain [2].

The purpose of this study was to further investigate the dynamics of glucose labeled with ¹⁷O at the C1 (Glc-1, 68 % labeled) and the C6 position (Glc-6, 43 % labeled) *in vivo* using dynamic ¹⁷O-MRS at ultra-high field. Two representative in vivo Glc-6 data sets were acquired as described in [2], and profile likelihood analysis (PL) was performed [3–6] to reliably determine metabolic rates of glucose consumption (CMR_{Glc}) from the recorded time dependent course of the H_2^{17} O resonances using a pharmacokinetic model.

MATERIAL & METHODS The 1-OH group at the anomeric C1 carbon of glucose (Glc-1) undergoes a known temperature and pH-dependent and concentration-independent chemical exchange with unlabeled water in aqueous solution [7,8]. Under physiological conditions the OH-group at the C6 position (Glc-6) cannot be replaced via chemical exchange in aqueous solutions, and no enzyme-catalyzed reaction is reported in the literature to substitute the C6-OH group in mammalians. However, recently we could show [2] that the C6-OH label is transferred in the glycolytic downstream by the enzyme enolase into the metabolic end product $H_2^{17}O$ (Figure 1).

EXCHANGE MEASUREMENTS To corroborate exchange dynamics, in a phantom experiment two 55 mM aqueous solutions of Glc-1 and Glc-6 dissolved in phosphate-buffered saline PBS (pH = 7.4, Sigma Aldrich) were prepared. Dynamic ¹⁷O-MRS was performed of the solutions with a 500 MHz spectrometer (Avance III 500, Bruker Biospin) over up to 200 min. Each spectrum was measured with an FID sequence at a body temperature (37°C) with the following parameters: 90°-pulse duration T_{pulse} = 21.5 µs, acquisition delay 10 µs, TE = 21 µs, TR = 50 ms, spectral band width BW = 31.25 kHz (461 ppm). Within the acquisition time of T_{acq} = 33 ms each FID was sampled with 2048 points and a dwell time of 16 µs. In total, 1024 FID signals were averaged per spectrum resulting in a measurement time of 1 min.

Model Fit and Profile Likelihood Analysis

With the exchange rates of the phantom experiments it was investigated whether CMR_{Glc} can be reliably determined from dynamic ¹⁷O MRS data. For this, a pharmacokinetic model was used [9] that requires an input function with model parameters α and ρ . These parameters were estimated from glucose tolerance tests [10] in mice after intravenous injection of unlabeled glucose. A profile likelihood analysis was then performed to assess whether CMR_{Glc} can be determined reliably from the time course of the H_2^{17} O-resonances; for this, it was considered that 1mol Glc-6 is converted into 1mol H_2^{17} O during glucose metabolism.

RESULTS & DISCUSSION In the dynamic Glc-6 experiment (Figure 2a) neither a signal increase of the $H_2^{17}O$ -resonance nor a decrease of the 6-OH resonance is observed which proves that exchange of hydroxyl groups at C-6 is kinetically inhibited, whereas in the Glc-1 exchange experiment (Figure 2b,c) a signal increase of 3.5 % is observed within the measurement time of 200 min. Thus, the C6-OH label will show up in water *in vivo* via glycolysis exclusively, while C1-OH ends up in $H_2^{17}O$ via either direct hydrolysis or glycolysis. Moreover this result indicates that the *in vivo* conversion rate of Glc-1 into $H_2^{17}O$ due to chemical exchange with water in blood is expected to be less than the metabolic rate [2]. As described in [11], α was estimated to 0.32 from the Glc-6 enrichment k = 43 %, the baseline and maximum concentration of the blood sugar measurements. The exponential fit to the blood sugar measurement yielded p-values of 0.033 /0.031 min⁻¹ (Figure 3). In the PL analysis CMR_{Glc} rates in the range of 0.05-0.08 µmol/g/min were obtained (Figure 5a,b) from the $H_2^{17}O$ -concentration-time courses (Figure 4). Note that similar metabolic rates of CMR_{Glc} = 0.06 µmol/g/min are obtained using a simplified model as proposed in [12]. The deviations from the literature value 0.26 ± 0.10 µmol/g/min (¹⁸F-FDG PET, mouse, 1.0 % iso-

OUTLOOK Although ¹⁷O-labeled glucose is currently less cost-effective than enriched ¹³C-glucose, oxygen-17 is a promising tracer to investigate novel metabolic pathways, which might provide enhanced sensitivity compared to established ¹³C-MRS methods [14]. In a future step dynamic ¹⁷O-MRS will be applied in a mouse model to monitor the glucose turnover in tumors.

flurane anaesthesia) [13] might be due to imperfections of the pharmacokinetic model and

References

uncertainties of α and ρ -values.

[1] O. Warburg, On the origin of cancer cells, Science. 123 (1956) 309–314. doi:10.1126/science.123.3191.309.

[2] Borowiak Robert, Reichardt Wilfried, Kurzhunov Dmitry, Schuch Christian, Jochen Leupold, Thomas Lange, Marco Reisert, Axel Krafft, Elmar Fischer, Michael Bock, Initial investigation of glucose metabolism in mouse brain using ¹⁷O-glucose and dynamic ¹⁷O-MRS, In proceedings of 24rd Annunal Meeting ISMRM (2015).

[3] D. Kurzhunov, R. Borowiak, H. Hass, P. Wagner, A.J. Krafft, J. Timmer, M. Bock, Quantification of oxygen metabolic rates in Human brain with dynamic ¹⁷O MRI: Profile likelihood analysis, Magn. Reson. Med. (n.d.) n/a-n/a. doi:10.1002/mrm.26476.

[4] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Klingmüller, J. Timmer, Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood, Bioinformatics. 25 (2009) 1923–1929. doi:10.1093/bioinformatics/btp358.

[5] A. Raue, B. Steiert, M. Schelker, C. Kreutz, T. Maiwald, H. Hass, J. Vanlier, C. Tönsing, L. Adlung, R. Engesser, W. Mader, T. Heinemann, J. Hasenauer, M. Schilling, T. Höfer, E. Klipp, F. Theis, U. Klingmüller, B. Schöberl, J. Timmer, Data2Dynamics: a modeling environment tailored to parameter estimation in dynamical systems, Bioinformatics. 31 (2015) 3558–3560. doi:10.1093/bioinformatics/btv405.

[6] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, C.S. Woodward, SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers, ACM Trans Math Softw. 31 (2005) 363–396. doi:10.1145/1089014.1089020.

[7] J.M. Risley, R.L. Van Etten, Kinetics of oxygen exchange at the anomeric carbon atom of D-glucose and D-erythrose using the oxygen-18 isotope effect in carbon-13 nuclear magnetic resonance spectroscopy, Biochemistry (Mosc.). 21 (1982) 6360–6365. doi:10.1021/bi00268a007.

[8] T.L. Mega, S. Cortes, R.L. Van Etten, The oxygen-18 isotope shift in carbon-13 nuclear magnetic resonance spectroscopy. 13. oxygen exchange at the anomeric carbon of D-glucose, D-mannose, and D-fructose, J. Org. Chem. 55 (1990) 522–528. doi:10.1021/jo00289a026.

[9] I.C. Atkinson, K.R. Thulborn, Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging in a human brain at 9.4 T, NeuroImage. 51 (2010) 723–733. doi:10.1016/j.neuroimage.2010.02.056.

[10] S. Andrikopoulos, A.R. Blair, N. Deluca, B.C. Fam, J. Proietto, Evaluating the glucose tolerance test in mice, Am. J. Physiol. - Endocrinol. Metab. 295 (2008) E1323–E1332. doi:10.1152/ajpendo.90617.2008.

[11] S.M. Fitzpatrick, H.P. Hetherington, K.L. Behar, R.G. Shulman, The flux from glucose to glutamate in the rat brain in vivo as determined by ¹H-observed, ¹³C-edited NMR spectroscopy, J. Cereb. Blood Flow Metab. 10 (1990) 170–179. doi:10.1038/jcbfm.1990.32.

[12] N. Zhang, X.-H. Zhu, H. Lei, K. Ugurbil, W. Chen, Simplified Methods for Calculating Cerebral Metabolic Rate of Oxygen Based on ¹⁷O Magnetic Resonance Spectroscopic Imaging Measurement during a Short ¹⁷O₂ Inhalation, J. Cereb. Blood Flow Metab. 24 (2004) 840–848. doi:10.1097/01.WCB.0000125885.54676.82.

[13] H. Toyama, M. Ichise, J.-S. Liow, K.J. Modell, D.C. Vines, T. Esaki, M. Cook, J. Seidel, L. Sokoloff, M.V. Green, R.B. Innis, Absolute quantification of regional cerebral glucose utilization in mice by ¹⁸F-FDG small animal PET scanning and 2-14C-DG autoradiography, J. Nucl. Med. 45 (2004) 1398–1405.

[14] R.A. de Graaf, P.B. Brown, D.L. Rothman, K.L. Behar, Natural abundance ¹⁷O NMR spectroscopy of rat brain in vivo, J. Magn. Reson. 193 (2008) 63–67. doi:10.1016/j.jmr.2008.04.019.

Figure 1: Degradation of ¹⁷O-labeled glucose at the C-1 (green) and C-6 positions (red) via glycolysis in ten steps to the final product pyruvate is shown. Chemical exchange of the C1-OH label with water in blood can take place before glycolysis. In the end of the TIM reaction two ¹⁷O-labeled GAP molecules (blue) are formed from one FPB molecule. Note that both glucose isotopologues (Glc-1 and Glc-6) lead to a labeled and an unlabeled GAP. Furthermore, each GAP is converted into 2-phosphoglycerate (2PG). Finally, $H_2^{17}O$ is cleaved off from each 2PG molecule by the enzyme enolase to form phosphoenolpyruvate (PEP).

H₂¹⁷O

CH₂OH

Figure 2: Two representative ${}^{17}O$ MRS (f₀ = 67.8 MHz) spectra are shown from the start (t_{start} = 0 min, blue) and end (tend = 200 min, red) of the (a) Glc-6 (b) Glc-1 chemical exchange experiment performed with a temporal resolution of 1 min. The α (36 ± 1 ppm) and β (47 ± 1 ppm) forms of the anomeric hydroxyl oxygen can be detected at physiological temperature (37°C). c) Normalized signal dynamics (peak height) of the $H_2^{17}O$ (set to 0 ppm, line width FWHM =1 ppm) resonance are shown over the time course of 200 min.

Figure 3: Time courses of two venous blood glucose concentration experiments (red, blue) after administration of 80 mg of unlabeled glucose in 200 μ l (0.9 % NaCl) and fits (solid line) with an exponential decay. In both blood sugar measurements the glucose level increases instantaneously to its maximum 42/ 36 mM value and then returns exponentially to the mean baseline concentration of 11/9 mM. Increase of glucose concentration level from baseline is indicated as a dashed line.

Figure 4: Two representative $H_2^{17}O$ concentration time-courses for the Glc-6 experiments Exp1 and Exp2 and pharmacokinetic model fits in red respectively blue and simplified model fits are shown. Glucose bolus (80 mg Glc-6 dissolved in 200 µl 0.9 % NaCl) was given at t = 27 min. Note that presented data was acquired using the same experimental parameters and setup as described in [2]. Both concentration-time curves show very similar dynamics and initial slopes.

Figure 5: a) Profile likelihood analysis of the parameters CMR_{Glc} , K_L and K_G of the pharmacokinetic model. Confidence intervals are indicated by the red dashed lines. b) The identifiability of the rates CMR_{Glc} , K_L and K_G is proved by finite confidence intervals. The rates CMR_{Glc} , K_L and K_G have units of μ mol/g/min.

The first observation of ¹⁷O MRI in normal rats at 21.1 T

Victor D. Schepkin¹, Andreas Neubauer², Christian Schuch³, Tilo Glaeser³, Michael Kievel³, Steven L. Ranner¹, William W. Brey¹, Shannon Helsper¹, and Lothar Schad²

¹CIMAR, NHMFL/FSU, Tallahassee, FL, United States, ²University of Heidelberg, Mannheim, Germany, ³NUKEM Isotopes, Alzenau, Germany

SYNOPSIS The capability of ¹⁷O MRI in a rat head was evaluated at the high magnetic field of 21.1 T (NHMFL, Tallahassee). The results demonstrated that ¹⁷O MR relaxation times are dependent on the magnetic field strength which correlates with experimental observations for sodium. Well separated MR peaks of ¹⁷O water and 6-¹⁷O glucose provided the time courses of water distribution and glucose consumption in vivo. 3D ¹⁷O MRI is possible with a resolution of 1 mm³ in normal rats. ¹⁷O MRI is a promising tool for future tumor detection and evaluation of tumor glucose consumption rates.

INTRODUCTION The natural abundance ¹⁷O MR signal in vivo ranks third after proton and sodium. For the same acquisition interval, the ¹⁷O signal is 3 times less than sodium ¹. Thus, the capability of the ¹⁷O MRI for in vivo studies at the magnetic field of 21.1 T (NHMFL, Tallahassee) is a promising tool. It is already expected that the increased magnetic field can bring a gain in scan time or in imaging resolution. However, the ultra-high magnetic field can also change ¹⁷O MR relaxation times, which will be demonstrated below. The main goal of this study is to explore the capability of ¹⁷O in vivo MRI at 21.1 T and present the results of using labeled ¹⁷O glucose and ¹⁷O water as the first steps for future tumor detection based on the Warburg effect.

METHODS The MR experiments were performed on a 21.1 T magnet using Bruker MRI Avance III console (PV 5.1). The MR frequency for ¹⁷O was 121.65 MHz. The in vivo RF probe has a double tuned ¹⁷O/¹H <u>volume</u> RF coil with an internal diameter of 33 mm, covering the whole rat head. Duration of the 90 RF pulse for ¹⁷O in vivo was 165 µs. The ¹⁷O MR relaxation times T_1 and T_2 were measured using 180°-t-90° or 90°-t-180° pulse sequences respectively using 256 steps, NA = 16. Both data were fitted by a single exponential function. 3D MR rat head imaging scans were performed using a modified Bruker UTE pulse sequence with voxel of 1 mL, matrix 64x64x64, FOV=64x64x64 mm, TR = 15 ms, TE = 0.2 ms, NA = 16 for natural ¹⁷O abundance or NA=1 after ¹⁷O enrichments. Scan time in the last case was 1.5 min. The time course of ¹⁷O MR signal was investigated after IV tail injections of 1 mL PBS solution containing 17% enriched H₂¹⁷O or 1.5 ml of PBS with 500 mg of 6-¹⁷O 47% enriched D-glucose. The in vivo experiments were performed using 3 male Fisher 344 rats (~ 200 g). All animal experiments were conducted according to the protocols approved by The Florida State University ACUC.

RESULTS AND DISCUSSION The relaxation times T_1 and T_2 at 21.1 T are presented in comparison to the previous data of others at a lower magnetic field ^{2, 3} (Fig. 1). It was found that T_2 of ¹⁷O in a rat head was 2.07 ± 0.03 ms (n = 3), which is much less than the 3.03 ms found earlier at 9.4 T ². The corresponding T_1 relaxation time at 21.1 T was 5.35 ± 0.09 ms (n=3), which is a bit higher than at 9.4 T and close to 16.4 T ³. Additionally, the ¹⁷O MR relaxation times in 0.45% saline solution, are both larger at 21.1 T (T_1 = 7.6 ± 0.24 ms, T_2 = 6.5 ± 0.2 ms) than at 9.4 T (T_1 = 6.5 ms, T_2 =4.1 ms) ². Thus, the ¹⁷O MR relaxation mechanism is dependent on the strength of the magnetic field, as was also observed for sodium ^{4, 5}. 3D MRI of ¹⁷O in a rat head can be acquired with a resolution of 1x1x1 mm with a scan time of 1.5 min after an IV injection of 1 ml of 17% enriched H₂¹⁷O (Fig. 2). The image acquired one minute after ¹⁷O water injection demonstrated the increased perfusion of the rat brain and cortical areas. The ¹⁷O water signal decreased after the injection due to its distribution inside the rat body with the exponential decay time of 11 ± 0.4min (n=2). Injection of the 6-¹⁷O labeled glucose yielded in 1.5 minutes a separate MR peak of glucose well separated from the ¹⁷O water signal (Fig. 3). The glucose peak, after the initial bolus passage, was slowly decreasing as a result of glucose metabolism (Fig 3). The exponential

glucose breakdown time was 48.2 ± 1.9 min (n=2). At the same time the rate of increase for the ¹⁷O MR water peak was ~ 1.5 times less.

CONCLUSION The results demonstrate that ¹⁷O MR relaxation times are dependent on the strength of the magnetic field which correlates with the earlier observations for sodium. The well separated ¹⁷O MR signals of glucose and water at the ultra-high magnetic field and the corresponding time courses provided separate rates of water distribution and glucose consumption in the rat head. 3D ¹⁷O MRI is possible with a resolution of 1 mm³ in the rat head. Thus, enriched oxygen MRI can be a promising tool for future tumor detection based on the Warburg hypothesis and for evaluating the rates of glucose metabolism in tumors.

ACKNOWLEDGEMENTS The study was performed at the National High Magnetic Field Laboratory (Tallahassee) supported by NSF, grant No. DMR-115490. Many thanks to Richard Desilets, Ashley Blue, Jason Kitchen, Malathy Elumalai, and Peter Gor'kov for their valuable help with RF probes.

References

[1] Budinger T, Bird M, Frydman L, et al. Towards 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale. MAGMA, Magnetic Resonance Materials in Physics, Biology and Medicine (Magn Reson Mater Phy) 2016; 1-23. [2] Zhu X, Merkle H, Kwang J, et al. ¹⁷O relaxation time and NMR sensitivity of cerebral water and their field dependence. Magn Reson Med. 2001; 45:543-549. [3] Lu M, Zhang Y, Ugurbil K, et al. In vitro and in vivo studies of ¹⁷O NMR sensitivity at 9.4 and 16.4 T. Magn Reson Med. 2013; 69:1523-1527. [4] Schepkin V. Sodium MRI of glioma in animal models at ultrahigh magnetic fields. NMR Biomed. 2016; 29:175-186. [5] Nagel A, Umathum R, Rosle M, et al. ¹⁹K and ²³Na relaxation times and MRI of rat head at 21.1 T. NMR in Biomed. 2016; 29:759-766.

Fig. 1.: Magnetic field strength dependence of ¹⁷O MR relaxation times in a rat head. The data at 21.1 T is presented relative to the lower field data of others 2, 3. Note the decrease of the T2 relaxation time at the high magnetic field.

13

Fig. 2.: ¹⁷O 3D MRI of rat head 1 min after injection of 17% enriched $H_2^{17}O$. Scan time was 1.5 min, resolution 1x1x1 mm. Note the increased perfusion in all areas of the rat brain and in the cortical areas.

Fig. 3.: The time course of metabolic ¹⁷O MR glucose signal decrease in a rat head after IV injection of the ¹⁷O labeled glucose. Each point represents a 6-¹⁷O glucose MR peak with a step of 15 s. The insert demonstrates one of such peaks, when the glucose MR signal is maximum. The MR peak of 6-¹⁷O glucose is at -12.3 ppm relative to ¹⁷O water peak. Glucose signal in the rat head after the initial quick bolus passage was fitted reasonably well by the exponential function with a decay time of 48.2 ± 1.9 min (n=2).

Oxygen-17 in the form of water

Oxygen-17 in the form of water is the perfect precursor for the synthesis of NMR active molecules.

As a novel development we recently synthesized ¹⁷O labeled D-glucose from our ¹⁷O-enriched water. After successful application of the ¹⁷O labeled glucose (see above abstracts), we are now convinced that there are several other molecules which can be synthesised from ¹⁷O enriched water and can be used for studying Oxygen metabolic pathways by magnetic resonance technology.

In the following you can find an ISMRM abstract, providing you with additional information about our booth wall (ISMRM 2017) (p.16-17). Furthermore, we included a MR-Bibliography about earlier ISMRM abstracts and publications about Oxygen-17.

Enrichment	¹⁷ O > 10at% - 90at%
Purity	> 99.9%
Volumes	Available in various volumes. Please contact us.
рН	6 - 8

Al	≤ 0,05* ppm
Br	≤ 0,5* ppm
Са	≤ 0,1* ppm
CI	≤ 0,5* ppm
Co, Cr, Cu	≤ 0,01* ppm
F	≤ 0,05* ppm
Fe	≤ 0,01* ppm
К	≤ 0,1* ppm

Mg	≤ 0,05* ppm
Mn	≤ 0,01* ppm
Na	≤ 1* ppm
Ni	≤ 0,01* ppm
NO ₂	≤ 0,1* ppm
NO ₃	≤ 0,05* ppm
Si	≤ 1* ppm
SO ₄	≤ 0,1* ppm
Pb	≤ 0,01* ppm
PO ₄	≤ 0,05* ppm
Zn	≤ 0,05* ppm

* applicable for 10at% enriched and 20at% enriched ¹⁷O water only!

Our Oxygen-17 products are manufactured in accordance with cGMP regulations and with the requirements of 21 Code of Federal Regulations: PARTS 210 and 211.

nformation about our ISMRM booth wall

SMRM-Abstract (booth wall information)

Dynamic ¹⁷O-MRI at 3 Tesla for in vivo CMRO₂ Quantification

Robert Borowiak^{1,2}, Dmitry Kurzhunov², Philipp Wagner², Marco Reisert², and Michael Bock²

¹German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany, ²Dept. of Radiology · Medical Physics, University Medical Center Freiburg, Freiburg, Baden-Württemberg, Germany

INTRODUCTION Malignant tumors predominately gain energy by high aerobic glycolysis (Warburg effect [1]). The metabolism of tumor cells in the brain can be monitored by assessing their cerebral metabolic rate of oxygen consumption (CMRO₂). Clinically, CMRO₂ is quantified with positron emission tomography (PET) using radioactively-labelled ¹⁵O. Unfortunately, ¹⁵O-PET is difficult to perform, because the procedure exposes the patient to ionizing radiation, and the short half-life of ¹⁵O (about 2 ms) requires onsite isotope production with a cyclotron. Another possibility to quantify CMRO2 is direct ¹⁷O-MRI at 7 or 9.4 Tesla [2, 3]. Un- fortunately, high field MR systems are limited to a few academic institutions, and are not found in clinical routine. Recently, feasibility of cerebral and cardiac ¹⁷O-MRI has been demonstrated at natural abundance at clinical field strength of 3 Tesla [4, 5]. In this work we show for the first time direct cerebral dynamic ¹⁷O-MRI in a volunteers head at a field strength of 3 Tesla, which is commonly available in a clinical routine.

MATERIALS AND METHODS The ¹⁷O-MRI measurements were performed at a clinical 3 Tesla MR system (Tim Trio, Siemens) using a custom-built Tx/Rx ¹⁷O head coil [5] tuned to the ¹⁷O resonance at f_0 = 16.7 MHz. For efficient administration of 70%-enriched ¹⁷O gas (NUKEM Isotopes GmbH, Germany) an MR-compatible re-breathing system was constructed consisting of a re-breathing mask and a demand oxygen delivery system (DODS, Oxytron3 Weinmann Hamburg, Germany) for gas supply. To demonstrate reproducibility of the gas

administration and to optimize the spatial resolution, two ¹⁷O inhalation experiments were performed in a healthy volunteer (male, age 49y) with a nominal isotropic resolution of 10 and 8 mm. In the experiments ¹⁷O MR images were acquired during a baseline phase of 10 min under free breathing, an inhalation DODS- phase (4-5 min) when ¹⁷O was administered, a re-breathing phase (5-8 min) with a closed rebreathing circuit, and a final wash-out phase (22-25 min), during which the volunteer was breathing room air. In total, 2.7 and 2.5 liter of enriched ¹⁷O gas were delivered during the two measurements.

A complete ¹⁷O measurement consisted of 45 3D data sets of the brain with a tempo- ral resolution of 1 min using an implemented density-adapted projection sequence (DAPR) [6]. Each data set in experiment 1/2 was acquired with the following imaging parameters: nominal resolution $(10/8 \text{ mm})^3$, TE = 0.52 ms, TR = 8/7 ms, Tpulse = 0.8 ms, BW =150/ 175 Hz/px, TRO = 6.7/ 5.7 ms, α = 69°, 1 average, 7500/ 8570 projections x 128 sample points per projection interpolated onto a 128³ matrix. The ¹⁷O data were reconstructed based on Kaiser-Bessel regridding algorithm without using any filter (e.g. Hann window) [7]. To improve the SNR, view sharing was performed by adding 3 consecutive kspace data sets. Additionally, for co-registration and segmentation of brain compartments 1H data were acquired (Fig.1) using a 3D MPRAGE sequence with the following parameters: TE = 2.86 ms, TR = 2300 ms, TI = 1100 ms, BW = 130 Hz/px, α = 12°, 1 average, FOV = (262 x 300) mm², SL = 1 mm, nominal resolution (0.6 x 0.6 x 1) mm³, matrix: 448 x 512, TAQ = 8:36 min. To obtain CMRO₂ values, gray matter (GM) and white matter (WM) regions were segmented, and a 4-phase model [3] was fitted to the signal-time curves using a non-linear least squares method (Fig. 2).

RESULTS AND DISCUSSION In both experiments an increase during and after ¹⁷O administration of 20-24 % was seen both in GM and in WM. The CMRO₂ values for GM and WM are in a good agreement with literature values for 10 mm voxel size (Fig. 3), whereas the values for higher spatial resolution of 8 mm exceed

literature values by 27-65%. In the 10 mm data sets an SNR of 12 was seen, and at 8 mm a lower SNR of 7 was observed, which might account for inaccuracies during CMRO₂ quantification due to the non-linear behavior of the magnitude signal at low SNR [9]. To overcome this limitation at higher spatial resolution, ¹H-constraint reconstruction could be applied.

In conclusion, two experiments were successfully performed at clinical field strength of 3 Tesla using a dedicated breathing system. These experiments are a first step to apply direct ¹⁷O-MRI in tumor patients to investigate the oxygen turnover in oncology.

Proc. Intl. Soc. Mag. Reson. Med. 23 (2015)

Fig. 1: Transverse slice of 17 O baseline data set (10 min) with 10 mm nominal resolution and SNR = 25; and segmented gray (b) and white matter (c) compartments used for CMRO₂

	CMRO ₂ [µmol/g _{tissue} *min]			
Tissue	3 T,	3 T,	7 T,	PET
	10 mm	8 mm	9.4 mm	
Gray Matter	1.59±0.16	2.02±0.28	1.65±0.29	1.59±0.23
White Matter	0.71±0.07	1.07±0.15	0.83±0.14	0.65±0.10
watter				

Fig. 3: CMRO₂ values obtained with direct ¹⁷O-MRI at 3 Tesla compared with literature values from 7 Tesla [3] and PET [8].

4633.

Fig. 2: Signal time courses for voxel sizes of 10 and 8 mm in gray (a, c) and white matter (b, d) are shown in absolute units of H_2 ¹⁷O [μ mol/voxel] and fitted with a four phase metabolic model

ISMRM 2016 Abstracts/Presentations

- Dmitry Kurzhunov, Robert Borowiak, Marco Reisert, Philipp Wagner, Axel Krafft, and Michael Bock; 3D CMRO₂ mapping in human brain with direct ¹⁷O-MRI and proton-constrained iterative reconstructions; Program Number 1470
- Hannes Michel Wiesner, Xiao-Hong Zhu, Kamil Ugurbil, and Wei Chen; Sensitivity Comparison of Ultrahigh-field Oxygen-17 MRS Imaging between 7T and 10.5T using a Human Head Size Phantom and Quadrature Surface Coil; Program Number: 3942
- Ruomin Hu, Andreas Neubauer, Jorge Chacón-Caldera, Javier Uranga Solchaga, Christian Schuch, Tilo Gläser, Cordula Nies, Eric Gottwald, Stefan Giselbrecht, and Lothar R. Schad; In Vitro Oxygen-17 NMR Spectroscopy of Cellular Metabolism at Ultra High Field; Program Number 3963
- Robert Borowiak, Wilfried Reichardt, Dmitry Kurzhunov, Christian Schuch, Jochen Leupold, Thomas Lange, Marco Reisert, Axel Krafft, Elmar Fischer, and Michael Bock; Initial investigation of glucose metabolism in mouse brain using enriched 17O-glucose and dynamic 17O-MRS; Program Number 3964
- Sebastian C. Niesporek, Reiner Umathum, Thomas M. Fiedler, and Armin M. Nagel; Evaluation of High Temporal and Spatial Resolution ¹⁷O-MRI; Program Number 3965
- 6. Sebastian C. Niesporek, Reiner Umathum, Thomas M. Fiedler, and Armin M. Nagel; Iterative Approach for Partial Volume Corrected T2* Determination in 17O-MRI; Program Number 3966

ISMRM 2015 Abstracts/Presentations

- 1. Borowiak, R., Kurzhunov, D., Wagner, P., Reisert, M., Bock; Dynamic ¹⁷O-MRI at 3 Tesla for In Vivo CMRO₂ Quantification; Program Number: 4633
- 2. Zhang, Y., Erokwu, B. O., Liu, Y., Farr, G. W., Boron, W. F., Flask, C. A., Yu, X.; Assessing Water Influx and Retention in the Brain of AQP4 Knockout Mice by ¹⁷O-MRI; Program Number: 1997.
- Najac, C., Tiret, B., Flament, J., Guillermier, M., Houitte, D., Badin, R.A., Hantraye, P., Brouillet, E., Lebon, V., Valette, J., CMRO₂ Quantification by Direct ¹⁷O MRI at 7 T in the Macaque Brain: Assessment of Energy Metabolism Impairment In Vivo; Program Number: 4615.
- 4. Zhu, X-H., Wiesner, H. M., Lee, B-Y., Lu, M., Ugurbil, K., Chen, W.; Quantitative and Simultaneous Imaging of CMRO₂, CBF and OEF in Resting Human Brain; Program Number: 0895.

ISMRM 2014 Abstracts/Presentations

- 1. Borowiak, R., Groebner, J., Kurzhunov, D., Fischer, E., Dragonu, I., Bock, M.; Direct Cerebral ¹⁷O-MRI at a Clinical Field Strenght of 3 Tesla Using a Tx/Rx Head Coil; Program Number: 0687.
- Zhu, X-H., Liu, X., Lu, M., Wiesner, H M., Ugurbil, K., Chen, W.; In Vivo ¹⁷O MR Imaging and Quantification of CMRO₂, CBF and OEF in Human Visual Cortex at Rest and During Activation; Program Number: 3763.
- Augath, M A., Seuwen, A., Zwick, S., Rudin, M.; Increase in Sensitivity and Signal Stability in ¹⁷O MRI Using a Cryogenic RF Probe; Program Number: 2972.
- Möllenhoff, K., Felder, J., Romanzetti, S., Gordji-Nejad, A., Shah, N J., Natural Abundance in Vivo ¹⁷O Measurements at 9.4T; Program Number: 0475.
- 5. Barbier, E., Mapping Blood Flow & Tissue Oxygenation with MRI: Insights from Other Modalities
- 6. Cerdán, S.; Subject: Bamboc; MR Spectroscopy: The Promise; Program Number: 1027.

ISMRM 2013 Abstracts/Presentations

- 1. Romanzetti, S., Fiege, D. P., Shah, N.J., 3D TWIRL: A Novel K-Space Trajectory for Imaging of Fast Relaxing Nuclei; Program Number: 3965.
- Hoffmann, S. H., Meise, F. M., Biller, A., Nagel, A. M.; Adaptive Combination of Multichannel Data for Non-Proton MRI; Program Number: 1983.
- Groebner, J., Borowiak, R., Rösler, M., Umathum, R., Fischer, E., Pavlina, J. M., Bock, M.; In Vivo ¹⁷O-MRI at 3 Tesla Using a TxRx Surface Coil; Program Number: 1985.
- Lee, J.-H., Norris, M., Fugate, E. M., Avdievich, G. I., Hetherington, H. P.; A Novel Double Tuned 4T ¹H/¹⁷O Head Volume Coil; Program Number: 2784.
- Cui, W., Zhu, X.-H., Vollmers, M., Colonna, E., Adriany, G., Tramm, B., Dubinsky, J., Oz, G., Oxygen-17 MRS for CMRO₂ Measurements in the Mouse Brain at 16.4T; Program Number: 0863.
- Hoffmann, S. H., Radbruch, A., Semmler, W., Nagel, A. M.; Partial Volume Corrected CMRO₂ Determination in a Glioblastoma Patient by ¹⁷O MRI; Program Number: 0216.

- 7. Wang, X., Zhu, X.-H., Zhang, Y., Chen, W., Significant BOLD Signal Reduction Induced by Perfluorocarbon Emulsion in the Rat Brain; Program Number: 0848.
- 8. Boros, E., Polasek, M.v., Zhang, Z., Caravan, P.A.; Single Amino Acid Gd-Complex as a Modular Tool for High Relaxivity MR Contrast Agent Development; Program Number: 1900.
- 9. Atkinson, I. C., Ultra-High Field MR: Multi-Nuclear Imaging, Symposium Emerging Technologies for Clinical Neuroimaging; Program Number: 007006

ISMRM 2012 Abstracts/Presentations

- Pilkinton, D. T., Babu, V. K., Baker, W., Greenberg, J. H., Reddy, R., Hyperoxic Calibrated Quantitative fMRI for the Measurement of Regional Cerebral Metabolic Rate of Oxygen in a Hypermetabolic Swine Model; *Program; Proc. Intl. Soc. Mag. Reson. Med. 20 (2012)*; Number: 2912
- Zhu, X.-H., Chen, W., In Vivo ¹⁷O Measurements of Water Rotational Correlation Time and Hydrodynamic Radius in Rat Brain; *Proc. Intl. Soc. Mag. Reson. Med. 20 (2012);* Program Number: 1821
- Wiener, E. C., Sengar, R., Elst, L. V., Abadjian, M.-C., Moore, C.E., Rheingold, A. L., Grotjahn, D., New Bifunctional Chelates with Optimal Water Residence Times for Molecular Imaging; *Proc. Intl. Soc. Mag. Reson. Med. 20 (2012)*; Program Number: 0793
- 4. Zheng, J., Muccigrosso, D., Bashir, A., Gupte, P., Gropler, R. J.; Quantitative Cardiac ¹⁷O MRI: Initial Validation Study; *Proc. Intl. Soc. Mag. Reson. Med. 20 (2012)*; Program Number: 3887.
- 5. Liu, P., Xu, F., Lu, H.; A Turn-Key Solution for the Quantification of Brain Oxygen Metabolism; *Proc. Intl. Soc. Mag. Reson. Med. 20 (2012);* Program Number: 471.

ISMRM 2011 Abstracts/Presentations

- 1. Atthe B, Kemerer M, Chen Y, et al. Quantitative Assessment of Mitochondrial Metabolic Efficiency by ¹⁷O and ³¹P MR Spectroscopy in Isolated Rat Hearts. *Proc. Intl. Soc. Mag. Reson. Med.* 19 (2011).
- 2. Muccigrosso D, He X, Abendschein D, et al. Methods for Quantification of Absolute Myocardial Oxygen Con- sumption with ¹⁷O-CMR. *Proc. Intl. Soc. Mag. Reson. Med.* 19 (2011).
- 3. Meise FM, Groebner J, Nagel AM, et al. A 30-Channel Phased Array for Oxygen-17 (¹⁷O) Brain MRI at 7 Tesla. *Proc. Intl. Soc. Mag. Reson. Med.* 19 (2011).
- Hoffmann SH, Nagel AM, Meise FM, Umathum R, Bock M. In Vivo Relaxation Parameters of Oxygen-17 (¹⁷O). Proc. Intl. Soc. Mag. Reson. Med. 19 (2011).
- Zhu X-H, Chen J, Tu T-W, Chen W, Song S-K. Exploring the New Utility of the ¹⁷O-MRS Imaging Technique for Studying CMRO2 and Perfusion in Stroke Mice. *Proc. Intl. Soc. Mag. Reson. Med.* 19 (2011).
- Wiesner HM, Pohmann R, Balla DZ, Chen W, Ugurbil K, Uludag K. Measurement of CMRO2 Changes by Soma- tosensory Stimulation in Rat Using Oxygen-17 at 16.4T. *Proc. Intl. Soc. Mag. Reson. Med.* 19 (2011).
- Kassey VB, Baker W, Mesquita RC, et al. Preliminary Studies to Assess CMRO₂ with Integrated T1 Rho MRI and Hybrid DRS/DCS Optical Approach in Clinical Scanners. *Proc. Intl. Soc. Mag. Reson. Med.* 19 (2011).
- Mateescu GD, Flask CA, Duerk JL. Novel Approach for the Assessment of the Bioavailability of Exogenous Phos- phate by in Vivo Dynamic ¹⁷O and ³¹P MRS and MRI. *Proc. Intl. Soc. Mag. Reson. Med. 19 (2011).*
- 9. Lu M, Wang X, Taylor R, et al. In Vitro and In Vivo Studies of ¹⁷O NMR Sensitivity at 9.4 and 16.4 Tesla. *Proc. Intl. Soc. Mag. Reson. Med.* 19 (2011).
- 10. Kirsch S, Schad LR. Single-Slice Mapping of Submillisecond T2 Using Spin Echo Prepared Ultra-Short Echo Time Imaging. *Proc. Intl. Soc. Mag. Reson. Med.* 19 (2011).

ISMRM 2010 Abstracts/Presentations

- 1. Zhu X-H, Zhang Y, Chen W. In Vivo ¹⁷O MRS Imaging for Assessing Myocardial Oxygen Metabolism in Rat Heart at 9.4T. *Proc. Intl. Soc. Mag. Reson. Med.* 18 (2010).
- Zhu X-H, Zhang Y, Wiesner H, Ugurbil K, Chen W. Estimation of CBF Based on the Metabolic H₂¹⁷O Decay Rate in CMRO₂ Measurement Using In Vivo ¹⁷O MR Approach. *Proc. Intl. Soc. Mag. Reson. Med.* 18 (2010).
- 3. Hoffman S, Begovatz P, Nagel A, Umathum R, Bock M. In Vivo Oxygen-17 (¹⁷O) MRI at 7 Tesla. *Proc. Intl. Soc. Mag. Reson. Med.* 18 (2010).
- 4. Wey H-Y, Du F, Lin A-L, et al. Indirect ¹⁷O MRI Using T1p at 11.7 T. *Proc. Intl. Soc. Mag. Reson. Med. 18 (2010).*
- 5. Narazaki M, Kanazawa Y, Ikehira H, Matsuda T. The ¹⁷O Imaging for Regional Oxygen Consumption Rate in Tumor Bearing Mice at 7T. *Proc. Intl. Soc. Mag. Reson. Med. 18 (2010)*

- Lu M, Spires J, Mateescu GD, Flask C, Yu X. Exploration of Mitochondrial Respiration in Isolated Hearts: An Ob- servation from Metabolically Produced H₂¹⁷O Using ¹⁷O NMR Spectroscopy. *Proc. Intl. Soc. Mag. Reson. Med.* 18 (2010).
- 7. Atkinson IC, Sonstegaard R, Bityou L, Pliskin NH, Thulborn KR. Safety of ¹⁷O and ²³Na MR Imaging of the Hu- man Brain at 9.4 Tesla. *Proc. Intl. Soc. Mag. Reson. Med.* 18 (2010).

ISMRM 2009 Abstracts/Presentations

- 1. Wiesner HM, Balla DZ, Pohmann R, Chen W, Ugurbil K, Uludag K. ¹⁷O T1/T2* Tissue-Relaxation Rates with Anatomical Contrast in the Rat Brain at 16.4 T. *Proc. Intl. Soc. Mag. Reson. Med. 18 (2010).*
- 2. Zhu X-H, Zhang Y, Ugurbil K, Chen W. Direct and Noninvasive Measurement of Cerebral Metabolic Rate of ATP in Cat Brain and Its Physiological Implications. *Proc. Intl. Soc. Mag. Reson. Med.* 18 (2010).
- McCommis KS, He X, Abendschein DR, Gupte PM, Gropler RJ, Zheng J. New Methods for the Quantification of Myocardial Oxygen Consumption with ¹⁷O MRI. Proc. Intl. Soc. Mag. Reson. Med. 18 (2010).
- 4. Atkinson IC, Thulborn KR. Non-Invasive, Whole-Brain CMRO₂ Mapping of the Human Brain. *Proc. Intl. Soc. Mag. Reson. Med.* 18 (2010).

Reviews

- 1. Gordji-Nejad A, Mollenhoff K, Oros-Peusquens AM, Pillai DR, Shah NJ Characterizing cerebral oxygen metabolism employing oxygen-17 MRI/MRS at high fields, *Magn Reson Mater Phy 2014; 27:81–93*
- 2. Zhu XH, Zhang N, Zhang Y, Zhang X, Ugurbil K, Chen W. In vivo ¹⁷O NMR approaches for brain study at high field. *NMR Biomed. Apr 2005;18(2):83-103*.
- 3. Mateescu GD. Functional oxygen-17 magnetic resonance imaging and localized spectroscopy. *Adv Exp Med Biol.* 2003;510:213-8.

Methods

- Dmitry Kurzhunov, Robert Borowiak, Helge Hass, Philipp Wagner, Axel Joachim Krafft, Jens Timmer, Michael Bock Quantification of Oxygen Metabolic Rates in Human Brain With Dynamic 17 O MRI: Profile Likelihood Analysis; Magn Reson Med 2016 Nov 1.
- Lou S, Lepak VC, Eberly Le, Roth B, Cui W, Zhu XH, Öz G, Dubinsky JM.; Oxygen consumption deficit in Huntington disease mouse brain under metabolic stress.; *Hum Mol Genet. 2016 Jul 1;25(13):2813-2826*
- 3. Suzuki K, Igarashi H, Huber VJ, Kitaura H, Kwee IL, Nakada T,; Ligand-Based Molecular MRI: O-17 JJVCPE Amyloid Imaging in Transgenic Mice, *J NeuroImaging Epub 23 FEB 2014*
- 4. Zhu XH, Zhang Y, Wiesner HN, Ugurbil K, Chen W,; In Vivo Measurement of CBF Using ¹⁷O NMR Signal of Metabolically Produced H₂¹⁷O as a Perfusion Tracer,; *Magn Res Medicine 70:309–314 (2013)*
- 5. Lu M, Zhang Y, Ugurbil K, Chen W, Zhu XH, In Vitro and In Vivo Studies of ¹⁷O NMR Sensitivity at 9.4 and 16.4 T,; *Magnetic Resonance in Medicine 69:1523–1527 (2013)*
- 6. Zhu XH, Chen JM, Tu TW, Chen W, Song SK Simultaneous and noninvasive imaging of cerebral oxygen metabolic

rate, blood flow and oxygen extraction fraction in stroke mice, NeuroImage 64:437-447 (2013)

7. Hoffmann SH, Begovatz P, Nagel AM, et al.; A measurement setup for direct (17) O MRI at 7 T. Magn Reson

Med. 2011;66(4):1109-15.

- 8. Hyder F.; Dynamic Brain Imaging Multi-Modal Methods and In Vivo Applications. 2009
- Zhu XH, Du F, Zhang N, Zhang Y, Lei H, Zhang X, Qiao H, Ugurbil K, Chen W. Advanced In Vivo Heteronuclear MRS Approaches for Studying Brain Bioenergetics Driven by Mitochondria. *Methods Mol Biol.* 2009;489:317-57.
- 10. Mellon EA, Beesam RS, Kasam M, Baumgardner JE, Borthakur A, Witschey WR Jr, Reddy R. Single shot T1rho magnetic resonance imaging of metabolically generated water in vivo. *Adv Exp Med Biol.* 2009;645:279-86.
- 11. de Graaf RA, Brown PB, Rothman DL, Behar KL. Natural abundance ¹⁷O NMR spectroscopy of rat brain in vivo. J *Magn Reson. 2008;193(1):63-7.*
- 12. Thelwall PE. Detection of ¹⁷O-tagged phosphate by (31)P MRS: a method with potential for in vivo studies of phosphorus metabolism. *Magn Reson Med.* 2007;57(6):1168-72.
- Zhu XH, Zhang Y, Zhang N, Ugurbil K, Chen W. Noninvasive and three-dimensional imaging of CMRO₂ in rats at 9.4 T: reproducibility test and normothermia/hypothermia comparison study. J Cereb Blood Flow Metab. 2007; 27: 1225 – 1234.
- 14. Tailor DR, Baumgardner JE, Regatte RR, Leigh JS, Reddy R.; Proton MRI of metabolically produced H₂¹⁷O us- ing an efficient ¹⁷O₂ delivery system. *Neuroimage. 2004;22(2):611-618.*

- 15. Sood R. Off-resonance binomial preparatory pulse technique for high sensitivity MRI of H₂O-17. *Magn Reson Imaging.* 2004;22(2):181-195.
- 16. Fiat D, Hankiewicz J, Liu S, Trbovic S, Brint S. ¹⁷O magnetic resonance imaging of the human brain. *Neurol Res. 2004;26(8):803-808.*
- 17. Zhang X, Zhu XH, Tian R, Zhang Y, Merkle H, Chen W. Measurement of arterial input function of ¹⁷O water tracer in rat carotid artery by using a region-defined (REDE) implanted vascular RF coil. *MAGMA*. 2003;16 (2):77-85.
- 18. Zhu XH, Merkle H, Kwag JH, Ugurbil K, Chen W. ¹⁷O relaxation time and NMR sensitivity of cerebral water and their field dependence. *Magn Reson Med.* 2001;45(4):543-9.
- 19. Charagundla SR, Duvvuri U, Noyszewski EA, et al. ¹⁷O-decoupled (1)H spectroscopy and imaging with a sur-face coil: STEAM decoupling. *J Magn Reson. 2000;143(1):39-44.*
- 20. Reddy R, Stolpen AH, Charagundla SR, Insko EK, Leigh JS. ¹⁷O-decoupled ¹H detection using a doubletuned coil. *Magn Reson Imaging*. 1996;14(9):1073-1078.
- 21.Reddy R, Stolpen AH, Leigh JS. Detection of ¹⁷O by proton T1 rho dispersion imaging. *J Magn Reson B.1995;108(3):276-279*
- 22.Lasker SE. Functional MR imaging of a metabolite of ¹⁷O₂. *Artif Cells Blood Substit Immobil Biotechnol.* 1994;22(4):1055-68.
- 23. Ronen I, Navon G. A new method for proton detection of H₂¹⁷O with potential applications for functional MRI. *Magn Reson Med. 1994;32(6):789-793.*
- 24. Kwong KK, Xiong J, Kuan WP, Cheng HM. Measurement of water movement in the rabbit eye in vivo using H₂ ¹⁷O. *Magn Reson Med.* 1991;22(2):443-50.
- 25. Hopkins AL, Haacke EM, Barr RG, Tkach J. Oxygen-17 contrast agents. Fast imaging techniques. Invest Radiol.1988;23 Suppl 1:S240-242.
- 26. Hopkins AL, Barr RG. Oxygen-17 compounds as potential NMR T2 contrast agents: enrichment effects of H₂¹⁷O on protein solutions and living tissues. *Magn Reson Med.* 1987;4(4):399-403.
- 27.Yeung HN, Lent AH. Proton transverse relaxation rate of ¹⁷O-enriched water. *Magn Reson Med.* 1987;5(1):87

Brain

- Hannes M. Wiesner, Dávid Z. Balla, G. Shajan, Klaus Scheffler, Kâmil Uğurbil, Wei Chen, Kâmil Uludağ and Rolf; 17O relaxation times in the rat brain at 16.4 tesla; *Magnetic Resonance in Medicine Vol. 75, 5,* 1886–1893, May 2016
- 2. DeLaPaz R, Gupte P.; Potential Application of ¹⁷O MRI to Human Ischemic Stroke. *Adv Exp Med Biol.* 2011;701:22
- 3. Mellon EA, Beesam RS, Elliott MA, Reddy R.; Mapping of cerebral oxidative metabolism with MRI. *Proc Natl Acad Sci U S A. 2010;107(26):11787-92*
- Atkinson IC, Sonstegaard R, Pliskin NH, Thulborn KR. Vital signs and cognitive function are not affected by ²³Na and ¹⁷O magnetic resonance imaging of the human brain at 9.4 T. *J Magn Reson Imaging.* 2010;32(1):82-7.
- 5. Atkinson IC, Thulborn KR. Feasibility of mapping the tissue mass corrected bioscale of cerebral metabolic rate of oxygen consumption using 17-oxygen and 23-sodium MR imaging. *Neuromage.* 2010;51(2):723-33.
- 6. Zhu X-H, Zhang N, Zhang Y, Ugurbil K, Chen W. New insights into central roles of cerebral oxygen metabolism in the resting and stimulus-evoked brain. *J Cereb Blood Flow Metab.*2009;29(1):10–8.
- Mellon EA, Beesam RS, Baumgardner, Borthakur A, Witschey WR, Reddy R. Estimation of the regional cerebral metabolic rate of oxygen consumption with proton detected ¹⁷O MRI during precision ¹⁷O₂ inhalation in swine. *J Neurosci Methods*.2009;179(1):29-39.
- Mellon EA, Beesam RS, Baumgardner JE, Borthakur A, Witschey WR, Reddy R. Estimation of the regional cere- bral metabolic rate of oxygen consumption with MRI during the first 60 seconds of ¹⁷O₂ inhalation in swine. *Proc. Intl. Soc. Mag. Reson. Med. 16 (2008).*
- Zhu XH, Zhang Y, Zhang N, Ugurbil K, Chen W., Noninvasive and three-dimensional imaging of CMRO(2) in rats at 9.4 T: reproducibility test and normothermia/hypothermia comparison study. J. Cereb Blood Flow Metab. 2007;27(6):1225-34
- 10. Tailor DR, Roy A, Regatte RR, et al. Indirect ¹⁷O-magnetic resonance imaging of cerebral blood flow in the rat. *Magn Reson Med. 2003;49(3):479-487.*
- 11. DeLaPaz RL, Gupte P, Connolly S, Wu E, Brown T. Oxygen-17 Uptake in Mouse Cerebral Ischemia. *Proc. Intl. Soc. Mag. Reson.Med.* 11 (2003).
- de Crespigny AJ, D'Arceuil HE, Engelhorn T, Moseley ME. MRI of focal cerebral ischemia using ¹⁷Olabeled water. *Magn Reson Med. 2000;43(6):876-883.*
- 13. Ronen I, Merkle H, Ugurbil K, Navon G. Imaging of H₂¹⁷O distribution in the brain of a live rat by using proton-detected ¹⁷O MRI. *Proc Natl Acad Sci U S A.* 1998; 95 (22):12934-12939.

- 14. Arai T, Nakao S, Morikawa S, et al. Measurement of local cerebral blood flow by magnetic resonance imaging: in vivo autoradiographic strategy using ¹⁷O-labeled water. *Brain Res Bull.* 1998;45(5):451-456.
- 15. Pekar J, Sinnwell T, Ligeti L, Chesnick AS, Frank JA, McLaughlin AC. Simultaneous measurement of cerebral oxy- gen consumption and blood flow using ¹⁷O and ¹⁹F magnetic resonance imaging. *J Cereb Blood Flow Metab.* 1995;15(2):312-320.
- 16. Fiat D, Dolinsek J, Hankiewicz J, Dujovny M, Ausman J. Determination of regional cerebral oxygen consumption in the human: ¹⁷O natural abundance cerebral magnetic resonance imaging and spectroscopy in a whole body system. *Neurol Res.* 1993;15(4):237-48.
- 17. Fiat D, Kang S. Determination of the rate of cerebral oxygen consumption and regional cerebral blood flow by non-invasive ¹⁷O in vivo NMR spectroscopy and magnetic resonance imaging. Part 2. Determination of CMRO₂ for the rat by ¹⁷O NMR, and CMRO₂, rCBF and the partition coefficient for the cat by ¹⁷O MRI. *Neurol Res. 1993;15(1):7-22*
- 18. Fiat D, Ligeti L, Lyon RC, et al. In vivo ¹⁷O NMR study of rat brain during ¹⁷O₂ inhalation. *Magn Reson Med.* 1992;24(2):370-374.
- 19. Kwong KK, Hopkins AL, Belliveau JW, et al. Proton NMR imaging of cerebral blood flow using H₂¹⁷O. *MagnReson Med.* 1991;22(1):154-158.
- 20. Hopkins AL, Lust WD, Haacke EM, Wielopolski P, Barr RG, Bratton CB. The stability of proton T2 effects of oxy- gen-17 water in experimental cerebral ischemia. *Magn Reson Med.* 1991;22(1):167-174.
- 21. Pekar J, Ligeti L, Ruttner Z, Lyon RC, Sinnwell TM, van Gelderen P, Fiat D, Moonen CT, McLaughlin AC. In vivo measurement of cerebral oxygen consumption and blood flow using ¹⁷O magnetic resonance imaging. *Magn Reson Med.* 1991;21(2):313-9.
- 22. Arai T, Mori K, Nakao S, Watanabe K, Kito K, Aoki M, Mori H, Morikawa S, Inubushi T. In vivo Oxygen-17 nu- clear magnetic resonance for the estimation of cerebral blood flow and oxygen consumption. *Biochem Biophys Res Commun.* 1991;179(2):954-61.
- 23. Arai T, Nakao S, Mori K, et al. Cerebral oxygen utilization analyzed by the use of Oxygen-17 and its nuclear magnetic resonance. *Biochem Biophys Res Commun.* 1990;169(1):153-158.
- 24. Hopkins AL, Haacke EM, Tkach J, Barr RG, Bratton CB. Improved sensitivity of proton MR to Oxygen-17 as a contrast agent using fast imaging: detection in brain. *Magn Reson Med.* 1988;7(2):222-229.

Heart & Muscle

- 1. Borowiak R, Groebner J, Haas M, Hennig J, Bock M, Direct cerebral and cardiac ¹⁷O-MRI at 3 Tesla: initial results at natural abundance, *Magn Reson Mater Phy 2014; 27:95–99*
- Lu M, Atthe B, Mateescub G, Flaska CA, Yua X, Assessing mitochondrial respiration in isolated hearts using ¹⁷O MRS NMR *Biomed 2012; 25(6): 883–889*
- 3. McCommis KS, He X, Abendschein DR, Gupte PM, Gropler RJ, Zheng J. Cardiac ¹⁷O MRI: Toward Direct Quan- tification of Myocardial Oxygen Consumption. *Magn Reson Med.* 2010;63(6):1442-7.
- 4. Rogers WJ, Gupte PM, Piccione EA, Kramer CM, Vido DA, Reichek N. T2 Imaging Using O-17 for Detection of Viability in Myocardial Infarction. *Proc. Intl. Soc. Mag. Reson. Med. 7 (1999).*
- 5. Fung BM, McGaughy TW. Study of spin-lattice and spin-spin relaxation times of ¹H, ²H, and ¹⁷O in muscular water. *Biophys J.* 1979;28(2):293-303.
- 6. Civan MM, Shporer M. Pulsed nuclear magnetic resonance study of ¹⁷O, ²D, and ¹H of water in frog striated muscle. *Biophys J.* 1975;15(4):299-306.

Oncology

- 1. Hoffmann SH, Radbruch A, Bock M, Semmler W, Nagel AM, Direct ¹⁷O MRI with partial volume correction: first experiences in a glioblastoma patient, *Magn Reson Mater Phy; epub April 1, 2014*
- 2. Narazaki M, Kanazawa Y, Koike S, Ando K, Ikehira H. Dynamical ¹⁷O imaging in tumor bearing mice at 7T. Proc. *Intl. Soc. Mag. Reson. Med. 15 (2007).*
- Tailor DR, Poptani H, Glickson JD, Leigh JS, Reddy R. High-resolution assessment of blood flow in murine RIF-1 tumors by monitoring uptake of H₂¹⁷O with proton T(1rho)-weighted imaging. *Magn Reson Med.* 2003;49 (1):1-6.
- 4. Shporer M, Haas M, Civan MM. Pulsed nuclear magnetic resonance study of ¹⁷O from H₂¹⁷O in rat lymphocytes. *Biophys J.* 1976;16(6):601-11.

Xenon-129 in the form of gas mixtures

Hyperpolarization of Xenon-129 is a revolutionary new diagnostic imaging tool for the magnetic resonance imaging (MRI) technology.

Hyperpolarized Xenon-129 makes it possible capturing high-resolution, 3D images of the lung using a conventional MRI scanner.

Due to the varying solubility of Xenon in different environments, it is additionally possible to illuminate organ functions and tissue characteristics in a total way.

Our cooperation partner Polarean Inc. designs and manufactures equipment for production of hyperpolarized Xenon or Helium gas.

Enrichment	129 Xe \ge 90at% and 129 Xe \ge 80at%
Purity	All mixtures ≥ 99.99%
Volume/Valves	<u>Mixtures:</u> Available in 3,000 liter - 7,000 liter gas cylinder (with CGA 580 valve) <u>Pure Gas:</u> Available in 50 liter - 7,000 liter gas cylinder (with CGA 580 valve)
Composition	$\frac{\text{Mixture 1:}}{^{129}\text{Xe} - 1\text{Vol}\%; N_2 - 10\text{Vol}\%; He - 89\text{Vol}\% (balance)}{\frac{\text{Mixture 2:}}{^{129}\text{Xe} - 3\text{Vol}\%; N_2 - 10\text{Vol}\%; He - 87\text{Vol}\% (balance)}$ For other compositions, please contact us.

CO	\leq 1 ppm (mixtures) / \leq 10 ppm (pure gas)
CO ₂	\leq 1 ppm (mixtures) / \leq 10 ppm (pure gas)
H ₂ O	\leq 1 ppm (mixtures) / \leq 10 ppm (pure gas)
O ₂	\leq 1 ppm (mixtures) / \leq 10 ppm (pure gas)
THC	\leq 1 ppm (mixtures) / \leq 5 ppm (pure gas)
CF ₄	\leq 1 ppm (mixtures) / \leq 5 ppm (pure gas)

Our Xenon-129 gas mixtures are manufactured in accordance with cGMP regulations.

Polarean Inc.

The 9820 ¹²⁹Xe hyperpolarizer provides a routine of high-purity, supply hyperpolarized ¹²⁹Xe for gas phase studies. magnetic resonance The polarizer is typically installed near the MRI/NMR suite and processes a custom mixture of ¹²⁹Xe, N₂ and ⁴He, into one or more doses of pure hyperpolarized ¹²⁹Xe that is available for magnetic resonance studies. There is no chemical change associated with hyperpolarization - only nuclear spin alignment and cryogenic extraction of pure xenon. The hyperpolarized ¹²⁹Xe is then thawed and dispensed into a container or bag. Once dispensed into an appropriate container, and maintained within a modest holding magnetic field, the polarization relaxes with a T_1 of 1–2 hr.

The new generation 9820 xenon polarizer features a tunable 200W water-cooled narrowed linewidth laser, an expanded oven to accommodate substantially larger volume cells, and a 4-coil electromagnetic field configuration to provide uniform coverage over the oven and polarized gas plumbing.

System Overview and Specifications

The 9820 Xenon Hyperpolarization system can be operated on site by personnel who have undergone appropriate training. Polarization levels range over 35–45% depending on the volume and throughput of produced xenon, typically at 1–3 L/h. The system operates as a Class 1 laser, and thus requires no laser protective eyewear during normal operation.

The 9820 xenon polarizer is capable of delivering ¹²⁹Xe polarization levels in the range of 35-45% as a function of production rate (1–3 L/h) when operating at the peak laser power. The dashed line shows the typical ¹²⁹Xe polarization leaving a 1.5-L cell whereas the color-coded lines depict the collected xenon volume using an effective solid-state xenon relaxation time of one hour.

Note: The 9820 Xenon Hyperpolarization system is designed for research use. If the system is used to produce hyperpolarized ¹²⁹Xe for human inhalation, all applicable institutional and federal approvals must be obtained.

The standard 9820 xenon polarizer configuration comes with a 1.5-L optical pumping cell, a triplezone temperature control system, custom optics to deliver a highly uniform laser beam across the entire cell length, and a high efficiency cryogenic xenon collection system. The 9820 platform is designed with several expansion options to enhance performance and throughput as new components become available. In the picture above, oven and laser covers are removed to show the details.

System Components

- Custom hyperpolarized ¹²⁹Xe compatible valves and tubing
- Hyperpolarized ¹²⁹Xe collection plumbing within the electromagnetic field
- Narrowed linewidth tunable 200W 795-nm optical pumping laser in Class 1 housing
- Circular polarizing and beam collimating optics
- Mass flow and pressure transducers
- Closed circuit water chiller for robust temperature control
- High-field high-capacity cryogenic accumulation area
- Vacuum pump and purge function to prepare delivery containers
- Shielded oven with dual-action active heating/cooling temperature control

- Flow-through optical cell installed in series with rubidium pre-saturator each with its own dedicated temperature control
- Laser transmission and spectral monitoring
- Safety interlocks
- Central power distribution

Safety Features

- Filtered power distribution
- Air flow switch
- Interlocked protective laser housing for Class 1 operation
- CE Mark, UL and CSA approvals
- DOT approved shipping of replacement optical cells.

Optional Equipment and Services

- Polarization measurement station with absolute calibration for ³He and ¹²⁹Xe
- Dual source ¹²⁹Xe cylinder manifold for real-time switching between natural abundance and enriched xenon mixes. This minimizes the risk of system contamination and downtime during frequent xenon cylinder changes.
- Heavy duty external purifier module with bypass function installed between the external gas manifold and the polarizer in order to further purify the gas mixes, protect the system against potential contamination and prolong the life of optical cells at their peak performance.
- Dose mixing syringes

Laboratory Space Requirements

- Controlled access space capable of temporary Class 4 laser operations
- Minimum room dimensions:
 - width 120" (3m)
 - depth 84" (2m)
 - height 84" (2m)
- Ferrous materials to be at least 3' (1m) away from the polarizer.
- Local ambient magnetic field preferably less than 1 Gauss

Polarizer Dimensions

170cm L x 60cm W x 160cm H (65" L x 24" W x 60" H)

Electrical Requirements

- 3 phase 208 V, 47-63 Hz, 20 A per phase
- Power outlet: US NEMA L21-30R
- Lockable isolate box

Compressed Air

- 20 psig (1.5 bar) minimum pressure
- 4 standard cubic feet per minute (110 L/min) minimal flow
- 0.01% water maximal content

Environmental Requirements

- 5 kW/h maximal heat load (17,000 BTUH = 1.5 Ton)
- Room temperature between 68-75 °F (20-24 °C)
- Dedicated temperature control

Supplies and Consumables

- External ¹²⁹Xe-⁴He-N₂ tank
- External UHP N₂ tank
- External commercial N₂ tank
- Liquid nitrogen
- Dose delivery bags

A pioneer in hyperpolarized gas systems, Polarean, Inc. is opening new avenues for functional and physiological imaging with its hyperpolarized gas MRI technology. Highresolution, 3D images of inhaled noble gases using conventional MRI scanners illuminate tissue characteristics and organ function currently inaccessible by existing methods. Hyperpolarized gases provide a promising research platform to extend MRI capabilities.

Predicted ¹²⁹Xe polarization level for a 300-ml batch after freeze-thaw as a function of flow for different polarizer generations Dashed line shows xenon polarization leaving the optical cell in 9820 polarizer using a 200W laser. Data point

PO Box 14805 Research Triangle Park, NC 27709-4805 United States Phone: +1-(919)-206-7900 Fax: +1-(919)-206-7901 info@polarean.com

Nitrogen-15 in the form of gas and salts for medical and agricultural applications

Nitrogen-15 (¹⁵N) is used to produce ¹⁵N labelled chemical compounds. ¹⁵N labelled chemical compounds are used for medical, biomedical and agriculture research. ¹⁵N in the form of gas has the potential as a lung imaging agent due to its comparable properties to air.

Our Nitrogen-15 is available in the form of

- Nitrogen Gas
- Ammonium Chloride
- Ammonium Sulphate
- Potassium Nitrate
- Ammonium Nitrate

Enrichment	¹⁵ N > 99at%
Purity	> 99.9%
Volume (gas)	Available in various volumes and various valve connections (please contact us).
Packing (salts)	400g and 500g bottles

Oxygen-18 in the form of water for medical applications

Oxygen-18 is used to create tailored organochemical compounds labelled with the radio isotope ¹⁸F (for example, 2-fluoro-2-deoxy glucose [¹⁸FDG]). These are used for Positron Emission Tomography (PET), the latest cancer diagnostic technique.

Enrichment	¹⁸ O > 98at%, ¹⁷ O < 2at% ¹⁶ O < 2at%
Purity	> 99.9%
Volume	25g – 50g vials
Pyrogen	< 0.25 EU/ml
Conductivity	< 2 µS/cm
рН	6 – 8

Our Oxygen-18 is available in the form of water

Our Oxygen-18 products are manufactured in accordance with cGMP regulations and with the requirements of 21 Code of Federal Regulations: PARTS 210 and 211.

Our ISMRM Rubber Duck Family

Due to the great interest in our rubber ducks, we are pleased to introduce our rubber ducks from the previous ISMRM conferences.

The rubber ducks are <u>not</u> for sale and only available at our booth (#222).

Come and visit us to pick up your 2017 edition.

Nurse Xenia Hawaii 2017 – 25th ISMRM

Dr. Willy Toronto 2015 – 23rd ISMRM

Nurse Alberta Salt Lake City 2013 – 21st ISMRM

Nurse Roberta Melbourne 2012 – 20th ISMRM

Dr. Bob (Robert) Montreal 2011 – 19th ISMRM

NUKEM Isotopes GmbH

Industriestr. 13 63755 Alzenau, Germany

T +49 (0)6023 91-1611 F +49 (0)6023 91-1614 E info@nukemisotopes.de

www.nukemisotopes.de